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Online Appendix A: Derivation of the Optimal UI Formula

We derive the optimal UI formula (11). We follow the derivation of formula (23) in a companion

paper (Landais, Michaillat, and Saez forthcoming). We condensate the derivation to avoid rep-

etition, while fleshing out the modifications introduced by home production, the nonpecuniary

cost of unemployment, and labor market flows.

Social welfare is a function of θ and ∆U :

SW (θ ,∆U) =
es( f (θ),∆U) · f (θ)

s+ es( f (θ),∆U) · f (θ)
· (∆U +ψ(es( f (θ),∆U)))

+U(cu(θ ,∆U)+hs(cu(θ ,∆U)))− z−λ (hs(cu(θ ,∆U)))−ψ(es( f (θ),∆U)).

The consumption level cu(θ ,∆U) is implicitly defined by

y
(

ls(θ ,∆U)

1+ τ(θ)

)
= (1− ls(θ ,∆U)) · cu(θ ,∆U)

+ ls(θ ,∆U) ·U−1 (U(cu(θ ,∆U)+hs(cu(θ ,∆U))− z−λ (hs(cu(θ ,∆U)))+∆U) .

We first compute the elasticity of labor supply with respect to tightness. Labor supply can

be written ls(θ ,∆U) = Λ(es( f (θ),∆U) · f (θ)), where Λ(x) ≡ x/(s + f (x)). Given that the

elasticity of Λ(x) with respect to x is 1−Λ(x), the elasticity of ls(θ ,∆U) with respect to θ is

(A1)
θ

l
· ∂ ls

∂θ

∣∣∣∣
∆U

= (1− l) · (1+ ε
f ) · (1−η).

The only difference with formula (14) in the companion paper is the extra factor (1− l). This

factor arises because labor supply is Λ(es( f (θ),∆U) · f (θ)) in the dynamic model instead of

es( f (θ),∆U) · f (θ) in the static model, and the elasticity of Λ(x) with respect to x is 1−Λ(x).

Next we compute the partial derivatives of the social welfare function. We start with the

partial derivative with respect to θ . First, we recompute equation (13) from the companion

paper. Since workers choose home production to maximize U(cu + h)− λ (h), changes in

hs(cu(θ ,∆U)) resulting from changes in θ have no impact on social welfare. Hence, the in-

troduction of home production does not add new terms to the partial derivative. The presence
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of home production only changes U ′(cu) into U ′(ch). Accordingly, equation (13) becomes

(A2)
∂SW
∂θ

= (1− l) · l
θ
· (1−η) · (∆U +ψ(e))+U ′(ch) · ∂cu

∂θ
.

The factor (1− l) in the first term appears because the environment is dynamic, as in (A1). The

fact that the environment is dynamic also changes ∆U into ∆U +ψ(e). Next we recompute

equation (15) from the companion paper. Equation (A1) implies that

∂ ls

∂θ
= (1− l) · l

θ
· (1−η) · (1+ ε

f ).

Furthermore, with home production the derivative of

ce(cu,∆U) =U−1 (U(cu +hs(cu))− z−λ (hs(cu))+∆U)

with respect to cu is
∂ce

∂cu =
U ′(ch)

U ′(ce)
.

Because unemployed workers choose home production to maximize U(cu+h)−λ (h), changes

in hs resulting from changes in cu have no impact on ce. Hence, equation (15) becomes

(A3) (1− l)
l
θ
(1−η)(1+ ε

f )(w−∆c)− l
θ

ητ(θ)w =

[
l

U ′(ce)
+

1− l
U ′(ch)

]
U ′(ch)

∂cu

∂θ
,

where ∆c≡ ce−cu. This equation is the same as equation (15) except for the factor (1− l) in the

left-hand side and the change of U ′(cu) into U ′(ch). Combining (A2) and (A3), we recompute

equation (10) from the companion paper:

(A4)
∂SW
∂θ

∣∣∣∣
∆U

= (1− l) · l
θ
· (1−η) ·φ ·w ·

[
∆U +ψ(e)

φ ·w
+R ·

(
1+ ε

f
)
− η

1−η
· τ(θ)

u

]
.

We continue by computing the partial derivative of social welfare with respect to ∆U . First,

we recompute equation (16) from the companion paper. Applying the envelope theorem for the

changes in hs and es resulting from changes in ∆U , we find that equation (16) becomes

(A5)
∂SW
∂∆U

= l +U ′(ch) · ∂cu

∂∆U
.
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Using the work done to obtain (A3), we recompute equation (17) from the companion paper:

(A6)
1− l
∆U
· εm · (w−∆c)− l

U ′(ce)
=

(
l

U ′(ce)
+

1− l
U ′(ch)

·
)
·U ′(ch) · ∂cu

∂∆U
.

Combining (A5) and (A6), we recompute equation (11) from the companion paper:

(A7)
∂SW
∂∆U

∣∣∣∣
θ

= (1− l) · φ ·w
∆U
· εm ·

[
R− l

w
· ∆U

εm ·
(

1
U ′(ce)

− 1
U ′(ch)

)]
.

The last step to obtain the optimal UI formula is linking the elasticity wedge to the equilib-

rium response of tightness to UI. Using (A1), we obtain

(A8) ε
M = ε

m + l · (1−η) ·
(

1+ ε
f
)
· ∆U

θ
· dθ

d∆U
.

This equation replaces equation (22) in the companion paper. The only difference is that the

factor l/(1− l) in equation (22) is replaced by a factor l here.

The first-order condition of the government’s problem is

0 =
∂SW
∂∆U

∣∣∣∣
θ

+
∂SW
∂θ

∣∣∣∣
∆U
· dθ

d∆U
.

Using the partial derivatives of SW (θ ,∆U) given by (A4) and (A7) and the derivative dθ/d∆U

implied by (A8), we obtain formula (11).

Online Appendix B: Job-Finding and Job-Separation Rates in CPS Data

We follow the method developed by Shimer (2012, pp. 130–133) to compute job-finding and

job-separation rates in CPS data for 1990–2014. In Section II.A, we use these rates to com-

pute the third measure of recruiter-producer ratio. This measure is the dotted line in Figure 1,

panel A.

We assume that unemployed workers find a job according to a Poisson process with monthly

arrival rate e(t) · f (t). The job-finding rate satisfies e(t) · f (t) = − ln(1−F(t)), where F(t) is

the monthly job-finding probability. We construct F(t) as follows:

(A9) F(t) = 1− u(t +1)−us(t +1)
u(t)

,
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Figure A1. Vacancy-Filling and Job-Separation Rates in the United States, 1990–2014

Notes: Panel A: The time series is the job-finding rate constructed using equation (A9) from CPS data. Panel B: The
time series is the vacancy-unemployment ratio v/u, where v is the help-wanted advertising index from Barnichon
(2010), scaled to match the number of vacancies in JOLTS data, and u is the number of unemployed persons in CPS
data. Panel C: The solid line is the vacancy-filling rate q = (e · f )/(v/u), where e · f is the time series in panel A
and v/u is the time series in panel B. The dashed line is the vacancy-filling rate q = h/v, where h and v are the
numbers of hires and vacancies in nonfarm industries in JOLTS data. Panel D: The solid line is the job-separation
rate constructed using equation (A10) from CPS data. The dashed line is the separation rate in nonfarm industries
in JOLTS data. The shaded areas represent the recessions identified by the NBER.
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where u(t) is the number of unemployed persons in month t in CPS data, and us(t) is the

number of short-term unemployed persons in month t in CPS data. The number of short-term

unemployed persons is the number of unemployed persons with zero to four weeks duration,

adjusted after 1994 as in Shimer (2012). We then construct e(t) · f (t) from F(t). The rate

e(t) · f (t) is displayed in Figure A1, panel A.

To compute the recruiter-producer ratio, the job-finding rate is converted into a vacancy-

filling rate. Panel B of Figure A1 displays the vacancy-unemployment ratio v(t)/u(t) con-

structed in Section II.A. Panel C of Figure A1 then displays the vacancy-filling rate constructed

from the job-finding rate and vacancy-unemployment ratio: q(t) = [e(t) · f (t)]/ [v(t)/u(t)]. For

comparison, panel C also displays the vacancy-filling rate constructed from JOLTS data in Sec-

tion II.A.

The job-separation rate s(t) is implicitly defined by

(A10) u(t +1) =
(

1− e−e(t)· f (t)−s(t)
)
· s(t)

e(t) · f (t)+ s(t)
·h(t)+ e−e(t)· f (t)−s(t) ·u(t),

where h(t) is the number of persons in the labor force, u(t) is the number of unemployed

persons, and e(t) · f (t) is the monthly job-finding rate. We measure u(t) and h(t) in CPS data

and use the above series for e(t) · f (t). Each month t, we solve (A10) to compute s(t). The rate

s(t) is displayed in Figure A1, panel D. For comparison, panel D also displays the job-separation

rate constructed from JOLTS data in Section II.A.

Online Appendix C: Construction of the Effective UI Replacement Rate

We construct the effective replacement rate of the UI program in the United States. This re-

placement rate is discussed in Section II.B and plotted in Figure 2.

We define the effective replacement rate as the average replacement rate among all unem-

ployed workers who are eligible to UI, or who were eligible to UI at some point during the

current unemployment spell. The effective replacement rate is

(A11) R(t) =
∑R j(t) ·N j(t)

∑N j(t)
,

where N j(t) is the number of unemployed workers who are in the j-th week of their unem-
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ployment spell and are or were eligible to UI, and R j(t) is the average UI replacement rate for

individuals who are in the j-th week of their unemployment spell.

To compute ∑R j(t) ·N j(t) in the numerator of (A11), we split the sum into active and

exhausted claims. A claim is exhausted when a jobseeker has been unemployed longer than the

potential duration of benefits, k. Since jobseekers who have exhausted their benefits have a zero

replacement rate, the sum is determined by active claims:

(A12) ∑R j(t) ·N j(t) = ∑
j≤k

R j(t) ·N j(t).

Before UI benefits are exhausted, the replacement rate is virtually constant during the un-

employed spell. Hence, we can compute (A12) as follows:

∑
j≤k

R j(t) ·N j(t) = R j≤k(t) ·∑
j≤k

N j(t),

where R j≤k(t) is the average replacement rate for all active claims, and ∑ j≤k N j(t) is the number

of active claims in all UI programs. The Department of Labor (DOL) provides data for all

existing UI programs: regular programs, extended-benefit programs, and exceptional federal

extensions. We use the number of active UI claims to compute ∑ j≤k N j(t). And we use the

average replacement rate among all active claims to compute R j≤k(t). This average replacement

rate is computed by the DOL as the ratio of claimants’ benefits to claimants’ base earnings: it

is stable over time, fluctuating between 45.8% and 47.4%, with an average value of 46.5%.1

Unfortunately, this average replacement rate is only available since 1997, so we cannot use it to

compute the effective replacement rate for 1990–2014 period. Instead, taking advantage of the

stability of the average replacement rate, we set R j≤k = 46.5% at all time.

To compute ∑N j(t) in the denominator of (A11), we need the number of unemployed work-

ers who are eligible to UI, or who were eligible to UI earlier during the current unemployment

spell. Since we do not know the number of unemployed workers who were eligible to UI dur-

ing the current unemployment spell, we measure ∑N j(t) by u(t)×β (t), where u(t) is the total

number of unemployed workers in month t in CPS data, and β (t) is the fraction of unemployed

workers who are job losers in month t in CPS data. While quits and new entrants in the labor

1This is unsurprising: most US states define weekly UI benefits as 1/26×base earnings, where base earnings are
the highest quarterly earnings in the year prior to unemployment. This amounts to replacing 50% of base earnings.
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force are not eligible for UI, job losers who meet minimal criteria are eligible to UI. Hence,

the number of job losers who are unemployed is a good approximation of the number of un-

employed workers who are or were eligible to UI. Finally, each month t we cap ∑N j(t) to the

number of active claims in that month. We do this to correct an anomaly that occurs for a

few months during the Great Recession: the number of active claims is slightly larger than our

estimate of the number of unemployed workers who are or were eligible to UI. The anomaly

arises because we measure the stock of unemployed workers who are or were eligible to UI

only approximately.

Online Appendix D: Available Estimates of UI Statistics

We compile existing estimates of several statistics that enter our optimal UI formula.

Matching Elasticity (η)

The matching elasticity, η , is defined by 1−η = d ln( f (θ))/d ln(θ). Empirical evidence sug-

gests that the matching function is Cobb-Douglas (Petrongolo and Pissarides 2001, p. 424).

With a Cobb-Douglas matching function m(e,u,v) = µ · (e ·u)η · v1−η , we have f (θ)≡ m/(e ·
u) = µ · [v/(u · e)]1−η , so η is the elasticity of the matching function with respect to unemploy-

ment.

A vast literature studies the matching function and estimates η . In their survey, Petrongolo

and Pissarides (2001, p. 424) conclude that the estimates of η fall between 0.5 and 0.7.

Evidence obtained in US data since the publication of Petrongolo and Pissarides’s survey

agrees with their assessment. For instance, Shimer (2005, p. 32) estimate η = 0.72 in CPS data.

Rogerson and Shimer (2011, p. 638) estimate η = 0.58 in JOLTS data. Many of these estimates,

however, take the job-search effort of workers as constant. The estimates could therefore be

biased if job-search effort was endogenous—as in our model. Borowczyk-Martins, Jolivet, and

Postel-Vinay (2013) propose an estimation method immune to this bias. On JOLTS data, they

find a lower estimate than earlier work: η = 0.3 (p. 444).

Based on these findings, we set η = 0.6. Given the uncertainty about the exact value of η ,

we also consider the cases η = 0.5 and η = 0.7 in the sensitivity analysis of Section IV.
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Discouraged-Worker Elasticity (ε f )

The discouraged-worker elasticity, ε f , measures how job-search effort responds to labor market

conditions. Search effort can be measured either by the time spent searching for a job or by the

number of methods used to search for a job.

Two studies measure ε f using the American Time Use Survey (ATUS), in which search ef-

fort is directly measured as the amount of time spent searching for a job. Both studies find that

ε f is positive: DeLoach and Kurt (2013) find that workers reduce their search in response to de-

teriorating labor market conditions; and Gomme and Lkhagvasuren (2015) find that individual

search effort is mildly procyclical.

Two other studies measure ε f from the CPS, in which search effort is proxied by the num-

ber of job-search methods used. These studies find that ε f is zero or slightly negative. Shimer

(2004) finds that labor market participation and search intensity are broadly acyclical, even after

controlling for changing characteristics of unemployed workers over the business cycle. This

evidence suggests that ε f is close to zero. Mukoyama, Patterson, and Sahin (2014) combine

ATUS and CPS data and find that aggregate search effort is countercyclical. Half of the coun-

tercyclical movement in search effort, however, is explained by a cyclical shift in the observ-

able characteristics of unemployed workers, and a large share of the remaining countercyclical

movement is explained by the fall in housing and stock-market wealth. This evidence suggests

that ε f is slightly negative.

Overall, these results suggest that the response of search effort to the job-finding rate is

probably small. We therefore set ε f = 0.

The calibration ε f = 0 implies that job search is unresponsive to labor market conditions,

but it does not imply that job search is unresponsive to UI. We can link ε f to εm, which measure

the response of job search to UI. Let 1/κ be the elasticity of ψ ′(e) with respect to e, εe
∆

be the

elasticity of es( f ,∆U) with respect to ∆U , and Λ(x) ≡ x/(s+ x) (the elasticity of Λ(x) with

respect to x is 1−Λ(x)). The effort supply es( f ,∆U) satisfies (6), which can be written

(A13) es ·ψ ′(es) = Λ(es · f ) · (∆U +ψ(es)) .
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Differentiating this condition with respect to ∆U yields

ε
e
∆ +

1
κ
· εe

∆ = (1− l) · εe
∆ +

∆U
∆U +ψ(e)

+
e ·ψ ′(e)

∆U +ψ(e)
· εe

∆.

Equation (A13) implies that e ·ψ ′(e) = l · (∆U +ψ(e)). Therefore,

ε
e
∆ = κ · ∆U

∆U +ψ(e)
.

Since labor supply satisfies ls(θ ,∆U) =Λ(es( f (θ),∆U) · f (θ)), the elasticity of ls(θ ,∆U) with

respect to ∆U is (1− l) · εe
∆

. By definition, εm is l/(1− l) times the elasticity of ls(θ ,∆U) with

respect to ∆U . Thus,

(A14) ε
m = l · εe

∆ = l ·κ · ∆U
∆U +ψ(e)

.

Next, we differentiate (A13) with respect to f and obtain

ε
f +

1
κ
· ε f = (1− l) · (ε f +1)+

e ·ψ ′(e)
∆U +ψ(e)

· ε f .

Equation (A13) implies that e ·ψ ′(e) = l · (∆U +ψ(e)). Hence,

ε
f = (1− l) ·κ.

Combining this equation with (A14), we find

ε
f =

1− l
l
· ∆U +ψ(e)

∆U
· εm.

We infer that ε f is much smaller than εm in normal circumstances because (1− l)/l is close

to 0. Thus, the model predicts a weak response of job search to labor market conditions even

when the response of job search to UI is significant.
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Microelasticity of Unemployment Duration with Respect to Benefit Level (εm
b )

The microelasticity of unemployment duration with respect to benefit level is defined by

(A15) ε
m
b =−∂ ln(es · f (θ))

∂ ln(cu)

∣∣∣∣
θ ,ce

.

Landais (2015) provides high-quality estimates of εm
b by implementing a regression kink design

on CWBH data. Averaging over five US states for 1976–1984, Landais estimates εm
b = 0.4

(p. 244). Using similar data but a different identification strategy, Meyer (1990) obtains slightly

higher estimates. Depending on the specification, Meyer’s estimates of εm
b fall between 0.5

and 0.9 (Table V, columns (4)–(5), row “log UI benefit level” and Table VI, columns (6)–

(9), row “log UI benefit level”). These two studies rely on older data, but Card et al. (2015)

obtain comparable estimates in recent data. They implement a regression kink design on an

administrative dataset from Missouri for 2003–2013 and find that εm
b is 0.35 in 2003–2007 and

is between 0.65 and 0.9 in 2008–2013 (p. 126).

Based on this evidence, we set εm
b = 0.4. Since these studies obtain a broad range of esti-

mates, we also consider the cases εm
b = 0.2 and εm

b = 0.6 in the sensitivity analysis of Section IV.

The estimate of εm
b will be useful to compute the microelasticity of unemployment with

respect to UI, εm. Indeed, using (A15) and 1− ls = s/(s+ es · f (θ)), we have

(A16) ε
m
b =

1
l
· ∂ ln(1− ls)

∂ ln(cu)

∣∣∣∣
θ ,ce

=− cu

l · (1− l)
· ∂ ls

∂cu

∣∣∣∣
θ ,ce

.

We now consider a change dcu, keeping ce and θ constant. By definition, ∆U =U(ce)−U(cu+

h)+ z+ λ (h). The change dcu does not affect ce but it affects h. Since workers choose h to

maximize U(cu+h)−λ (h), however, changes in h resulting from changes in cu have no impact

on ∆U . Thus the change dcu implies a change d∆U = −U ′(ch) · dcu. Using (A16) and the

definition of εm, we therefore obtain

(A17) ε
m
b =

cu

l · (1− l)
·U ′(ch) · ∂ ls

∂∆U

∣∣∣∣
θ

=
cu ·U ′(ch)

l ·∆U
· εm.
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Coefficient of Relative Risk Aversion (γ)

A large literature, following a wide range of approaches, estimates risk aversion. We take

our estimate of the coefficient of relative risk aversion, γ , from Chetty (2006). We use this

estimate because it comes from the same data that are also used to measure the microelasticity

of unemployment with respect to UI and the consumption drop upon unemployment. Hence,

the curvature of utility that it measures is relevant for evaluating the effect of UI on welfare

(Chetty and Finkelstein 2013, p. 154).

Chetty uses data on labor supply from more than 30 studies. He analyzes the risk aversion

implied by the response of labor supply to wage changes. He reports a median estimate of

γ = 1, with an upper bound of γ = 2 and a lower bound around γ = 0.2 (p. 1822, p.1830).

Accordingly, we set γ = 1. Given the uncertainty about the exact value of γ , we also consider

the cases γ = 0.5 and γ = 2 in the sensitivity analysis of Section IV.

The coefficient of relative risk aversion will enable us to link marginal utility to consump-

tion. Indeed, a first-order Taylor expansion of U ′ around ce yields U ′(ch) = U ′(ce)−U ′′(ce) ·(
ce− ch). Since γ =−ce ·U ′′(ce)/U ′(ce), we obtain

(A18)
U ′(ch)

U ′(ce)
= 1+ γ ·

(
1− ch

ce

)
.

Since the first-order Taylor expansion of 1/(1+ x) around x = 0 is 1− x, another first-order

approximation is

(A19)
U ′(ce)

U ′(ch)
= 1− γ ·

(
1− ch

ce

)
.

Consumption Drop upon Unemployment (1− ch/ce)

A large literature documents the drop in consumption upon unemployment in the United States.

A number of studies measure consumption by expenditure on food. Gruber (1997, p. 195)

estimates in data from the Panel Study of Income Dynamics (PSID) that food expenditure falls

by 7% upon unemployment. Many studies have confirmed this estimate in PSID data. For in-

stance, Stephens (2001, p. 32) finds that food expenditure falls by 9% following a job displace-

ment and Hendren (2016, p. 1792) finds that it falls by 8%. Different datasets yield comparable
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estimates. For instance, in a dataset describing more than 200,000 checking accounts that have

received UI benefits, Ganong and Noel (2016, Table 6, column (3)) find that food expenditure

is lower by 5% while receiving UI.

It is possible that upon unemployment, food consumption falls less than food expenditure.

If households spend more time on food production at home when unemployed, they may be

able to smooth food consumption despite reducing food expenditures (Aguiar and Hurst 2005).

There are several factors suggesting, however, that the consumption drop used to calibrate our

formula should be larger than the drop in food expenditure upon unemployment.

First, food consumption is more inelastic than total consumption to an income change, so the

drop of total consumption upon unemployment will be larger than the drop of food consumption.

For instance, Browning and Crossley (2001, p. 19) report that the income elasticity of food

consumption is 0.6, which implies that food-consumption drops of 5%, 7%, and 9% would

translate into total-consumption drops of 5%/0.6 = 8%, 7%/0.6 = 12%, and 9%/0.6 = 15%.

Consistent with this argument, Ganong and Noel (2016, Table 6, column (3)) find that upon

unemployment, expenditure on all nondurable goods falls by more than food expenditure: it

falls by 7%.

Second, it seems that consumption of workers who eventually become unemployed start

falling well before they actually lost their job. Hendren (2016, p. 1792) finds in PSID data that

food expenditure drops by about 3% in the two years before job loss.

Third, in the United States, UI benefits only last for a limited time (usually 26 weeks).

Households who cannot find a job before exhausting their benefits suffer an additional consump-

tion drop. In the same way that our effective UI replacement rate accounts for both unemployed

workers receiving benefits and unemployed workers whose benefits expired, the consumption

drop should incorporate the consumption of both unemployed workers receiving benefits and

unemployed workers whose benefits expired. Ganong and Noel (2016) find that the consump-

tion drop upon benefit exhaustion is significant: expenditure on all nondurable goods falls by

an additional 10% upon benefit exhaustion (p. 26). Thus, expenditure on all nondurable goods

for unemployed workers whose benefits expired is 7%+10% = 17% below what it was before

job loss.

Taking all these considerations into account, we set the consumption drop upon unemploy-

ment to 1− ch/ce = 12%. Given the uncertainty about the exact value of the drop, we also
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consider the cases 1−ch/ce = 5% and 1−ch/ce = 20% in the sensitivity analysis of Section IV.

Next, we link the consumption drop upon unemployment to the UI replacement rate, R. We

have 1− (ch/ce) = 12% when R takes its average value of 42%. Since the consumption of

unemployed workers, ch, depends on R, the ratio ch/ce is mechanically related to R. We now

described this relation.

First, Gruber (1997, p. 195, p. 202) estimates that when the UI benefit rate increases by

10 percentage point from an average value of 43%, the food consumption of an unemployed

worker increases by 2.7%. The implied elasticity of food consumption with respect to UI ben-

efits therefore is 2.7/(10/0.43) = 0.12. Using an income elasticity of food consumption of

0.6, we convert the response of food consumption into the response of total consumption: the

elasticity of total consumption with respect to UI benefits is 0.12/0.6 = 0.2. In other words,

d ln(ch)/d ln(cu) = 0.2.

Second, we combine the government’s budget constraint, y = l · ce +(1− l) · cu, with the

definition of the replacement rate, cu = ce− (1−R) ·w. We find

ce = y+(1− l) · (1−R) ·w

Let α be the labor share, defined by α = w · l/y. We have

(A20)
ce

w
=

l
α
+(1− l) · (1−R).

The labor share is determined by the shape of the production function: with a production func-

tion y(n) = nα , the labor share is α . In Section III, we find that the shape of the production

function also determines the elasticity wedge. To obtain an elasticity wedge of 0.4, we set

α = 0.73. To have a labor share consistent with the elasticity wedge, we also set α = 0.73.

Using α = 0.73, 1− l = 6.1%, and R = 42%, we find ce/w = 1.32. In addition, (A20) shows

that a change dR in the replacement rate implies a change dce =−w ·u ·dR. Here the underlying

assumption (supported by the empirical evidence presented in Section III.C) is that w does not

respond to R.

Third, since cu = ce− (1−R) ·w, equation (A20) implies that

(A21)
cu

w
=

l
α
− l · (1−R).

13



Using α = 0.73, l = 0.94, and R = 42%, we find cu/w = 0.74. Moreover, a small change dR in

replacement rate generates a benefit change dcu = w · l ·dR.

Using the property that d(ch/ce) = (ch/ce) ·d ln(ch/ce), we find that when the replacement

rate changes by dR,

d(ch/ce) =
ch

ce ·
[

d ln(ch)

d ln(cu)
·dln(cu)−dln(ce)

]
·dR.

Then, using dce =−w ·u ·dR and dcu = w · l ·dR, we obtain

(A22) d(ch/ce) =
ch

ce ·
[

d ln(ch)

d ln(cu)
· l · w

cu +(1− l) · w
ce

]
·dR.

Using 1−ch/ce = 12%, d ln(ch)/d ln(cu)= 0.2, cu/w= 0.74, and ce/w= 1.32, we find d(ch/ce)=

0.26×dR, and we finally obtain

(A23) 1− ch

ce = 0.12−0.26× (R−0.42).

Lastly, we assume that the consumption drop upon unemployment does not respond to labor

market conditions. This assumption is motivated by the work of Kroft and Notowidigdo (2016).

In PSID data they find that the consumption drop does not vary with the unemployment rate.

Online Appendix E: Calibration of the Optimal UI Formula

We compute the approximate optimal UI formula (21) by calibrating each of its elements.

Utility Cost of Unemployment

We derive (15), which expresses the utility cost of unemployment, K, as a function of UI.

We start by computing the average value of K, achieved when unemployment rate and UI

replacement rate take their average values u = 6.1% and R = 42% (Section II). The cost K is

given by (9). Since Z/(φ ·w) = 0.3 (Section II), it only remains to calculate

(A24)
U(ce)−U(ch)

φ ·w
=

U(ce)−U(ch)

U ′(ce) · ce ·U
′(ce)

φ
· c

e

w
.
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We compute each of the three factors in the right-hand side. First, (A20) implies ce/w = 1.32.

Next, (10) and (A19) imply that

(A25)
U ′(ce)

φ
= 1− γ · (1− l) ·

(
1− ch

ce

)
.

With γ = 1 and 1−ch/ce = 12% (Online Appendix D), and 1−l = u= 6.1%, we find U ′(ce)/φ =

0.99. Last, a first-order Taylor expansion of U yields U(ch) =U(ce)+U ′(ce) ·
(
ce− ch) so

(A26)
U(ce)−U(ch)

U ′(ce) · ce = 1− ch

ce .

With 1− ch/ce = 12%, we find that
(
U(ce)−U(ch)

)
/(U ′(ce) · ce) = 0.12. Combining these

estimates with (A24), we conclude that
(
U(ce)−U(ch)

)
/(φ ·w) = 0.99×1.32×0.12 = 0.16.

This implies that the average utility cost of unemployment is K = 0.16+0.3 = 0.46.

Next, we explore how K depends on labor market conditions. We have seen that Z/(φ ·w)
does not depend on unemployment (Section II). Moreover, we have seen that the consumption

drop upon unemployment does not depend on labor market conditions (Online Appendix D);

therefore, (A26) implies that (U(ce)−U(ch))/(U ′(ce) · ce) does not depend on labor market

conditions. Equations (A20) and (A25) show that both ce/w and U ′(ce)/φ are affected by

employment l, but the effects on K will be small. With R = 42%, α = 0.73, and 1− ch/ce =

12%, we have ∂ (ce/w)/∂ l = R+(1−α)/α = 0.8 so the effect of l on K through ce/w is less

than 0.8×0.12 = 0.1. Since l moves by less than 5 percentage points around its average value

of 94%, changes in l have effects on K through ce/w of less than 5× 0.1 = 0.5 percentage

point. We neglect them. Further, with 1− ch/ce = 12% and γ = 1, we have ∂ (U ′(ce)/φ)/∂ l =

γ · (1− ch/ce) = 0.12 so the effect of l on K through U ′(ce)/φ is 0.12× 0.12× 1.32 = 0.02.

Changes in l therefore have effects on K through U ′(ce)/φ of less than 5×0.02= 0.1 percentage

point. We also neglect them. To conclude, labor market conditions have minuscule effects on

K, and we neglect them.

Finally, we study how K varies with the UI replacement rate, R. Equation (9) shows that

K =
U(ce)−U(cu +h)+ z+ψ(e)+λ (h)

φ ·w
.

As in Online Appendix D, we assume that R has no effect on w. Further, since h is chosen
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optimally to maximize U(ch)−λ (h), the change in h caused by R has no first-order effect on

K. Hence, we only need to determine how cu, U(ce), ψ(e), and φ respond to R.

We start by determining the response of cu to R. Equation (A21) shows that a small change

dR generates a change dcu = w · l ·dR. Accordingly, the effect of dR on U(cu+h) through cu is

dU(cu +h) =U ′(ch) ·w · l ·dR and

(A27)
dU(cu +h)

φ ·w
= l ·U

′(ch)

φ
·dR.

Using (10) and (A18), we obtain

(A28)
U ′(ch)

φ
= 1+ γ · l ·

(
1− ch

ce

)
.

With l = 1− u = 0.94, γ = 1, and 1− ch/ce = 12%, we obtain U ′(ch)/φ = 1.11 and dU(cu +

h)/(φ ·w) = 0.94×1.11×dR = 1.04×dR.

Second, we determine the response of U(ce) to R. Equation (A20) shows that a small change

dR generates a change dce =−u×w×dR. Accordingly, the effect of dR on U(ce) satisfies

(A29)
dU(ce)

φ ·w
=−u ·U

′(ce)

φ
·dR.

With u = 6.1% and U ′(ce)/φ = 0.99, we obtain dU(ce)/(φ ·w) =−0.06×dR.

Next, we determine the response of ψ(e) to R. Consider again a small change dR. The

associated change dcu = w · l · dR generates a change de determined by the microelasticity of

unemployment duration with respect to benefit level:

de
e

= ε
m
b ·

dcu

cu = ε
m
b · l ·

w
cu ·dR.

Accordingly, the effect of dR on ψ(e) satisfies

dψ(e)
φ ·w

=
ψ ′(e)
φ ·w

·de =−e ·ψ ′(e)
φ ·w

· l · w
cu · ε

m
b ·dR.
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Using (6), we rewrite this equation as

(A30)
dψ(e)
φ ·w

=−l2 ·K · w
cu · ε

m
b ·dR.

Equation (A21) implies cu/w = 0.74. With εm
b = 0.4 (Online Appendix D), l = 0.94, and

K = 0.46, we obtain dψ(e)/(φ ·w) =−0.22×dR.

Last, the response of 1/(φ ·w) to R is exactly zero under log utility and minuscule otherwise.

Indeed,
1

φ ·w
=

1
w
·
[

1−u
U ′(ce)

+
u

U ′(ch)

]
.

A change dR leads to changes dce/w = −u ·dR and dcu/w = (1−u) ·dR. Hence, it leads to a

change

d
(

1
φ ·w

)
= (1−u) ·u ·

[
U ′′(ce)

(U ′(ce))2 −
U ′′(ch)

(U ′(ch))2

]
·dR.

With constant-relative-risk-aversion utility, U(c) =
(
c1−γ −1

)
/(1− γ), we obtain

d
(

1
φ ·w

)
=

γ · (1−u) ·u
(ch)1−γ

·

[(
ch

ce

)1−γ

−1

]
·dR

≈ (1−u) ·u · γ · (γ−1)
(ch)1−γ

·
(

1− ch

ce

)
·dR.

With γ = 1, this is exactly 0. With other values of γ around 1, because u · (1− ch/ce) = 0.006,

the response of 1/(φ ·w) to R remains minuscule, and we neglect it.

Collecting all the results, and using the fact that K = 0.46 when R = 42%, we obtain

(A31) K = 0.46− (1.04+0.06+0.22) · (R−0.42) = 0.46−1.32× (R−0.42).

Elasticity Wedge

We derive (18), which relates the elasticity wedge, 1− εM/εm, to labor market conditions.

The average value of the elasticity wedge is 0.4 (Section III). This average value is achieved

when the ratio τ/u takes its average value of 0.38 (Section II). Our aim is to determine how the

elasticity wedge varies when τ/u deviates from its average value. Empirical evidence discussed

in Section III.E indicates that the elasticity wedge is higher when the labor market is depressed
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and τ/u is low. Unfortunately this evidence is insufficient to directly quantify the response of

the elasticity wedge to τ/u, and we resort to an indirect, structural approach: we compute the

elasticity wedge in the job-rationing model of Michaillat (2012) and use the response predicted

by the model. (See Section IV.D for a description of the model.)

By definition, εM is l/(1− l) times the elasticity of l with respect to ∆U . Since l = ld(θ ,a)

in equilibrium, and since the elasticity of ld(θ ,a) with respect to θ is−η ·τ(θ) ·α/(1−α) (see

equation (22)), we infer that

ε
M =− l

1− l
·η · α

1−α
· τ(θ) · ∆U

θ
· dθ

d∆U
.

We substitute the expression for (∆U/θ) · (dθ/d∆U) from (A8) into this equation and obtain

ε
M =

η

1−η
· α

1−α
· 1

1+ ε f ·
τ(θ)

u
·
(
ε

m− ε
M) .

Dividing this equation by εm and rearranging yields the elasticity wedge:

(A32) 1− εM

εm = 1
/(

1+
η

1−η
· α

1−α
· 1

1+ ε f ·
τ(θ)

u

)
.

This equation describes the elasticity wedge as a function of τ/u. This function’s derivative is

(A33)
d(1− εM/εm)

d(τ/u)
=−

(
1− εM

εm

)2

· η

1−η
· α

1−α
· 1

1+ ε f .

We now calibrate the production-function parameter α so that the average value of the elas-

ticity wedge is 0.4. In (A32), we set η = 0.6 and ε f = 0 (Online Appendix D) and τ/u = 0.38.

We then need α = 0.73 to obtain 1− εM/εm = 0.4.

Finally, we use these results to linearize the elasticity wedge around its average value. Equa-

tion (A33) shows that with η = 0.6, ε f = 0, and α = 0.73, the average value of the derivative

d(1− εM/εm)/d(τ/u) is 0.65. Hence, we linearize the elasticity wedge as follows:

1− εM

εm = 0.4−0.65×
(

τ

u
−0.38

)
.
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Baily-Chetty Replacement Rate

We compute equation (19), which gives the Baily-Chetty replacement rate as a function of UI.

We begin by reworking the expression of the Baily-Chetty replacement rate in (11). Us-

ing (A19), we rewrite the Baily-Chetty replacement rate as

γ · l ·∆U
εm ·φ ·w

· φ

U ′(ce)
·
(

1− ch

ce

)
.

From (A14), we know that

(A34)
l ·∆U

εm ·φ ·w
=

1
κ
· ∆U +ψ(e)

φ ·w
=

1
κ
·K,

where 1/κ is the elasticity of ψ ′(e) with respect to e. Thus the Baily-Chetty replacement

becomes

(A35)
γ

κ
·K · φ

U ′(ce)
·
(

1− ch

ce

)
.

We now compute each of the factors in (A35). Equations (A23) and (A31) give 1− ch/ce

and K. Online Appendix D shows that γ = 1. To compute κ , we use equation (A17), which

gives
εm ·φ ·w

l ·∆U
=

φ

U ′(ch)
· w

cu · ε
m
b .

Combining this equation with (A34), we obtain

(A36) κ = K · φ

U ′(ch)
· w

cu · ε
m
b .

With K = 0.46, U ′(ch)/φ = 1.11 (equation (A28)), cu/w = 0.74 (equation (A21)), and εm
b =

0.4 (Online Appendix D), we find κ = 0.22. Last, (A25) shows that on average φ/U ′(ce) =

1/0.99 = 1.01 and that φ/U ′(ce) does not respond much to changes in labor market conditions

and UI. Indeed, the equation shows that ∂ (U ′(ce)/φ)/∂ l = γ ·(1−ch/ce) = 1×0.12= 0.12 and

∂ (U ′(ce)/φ)/∂R = γ · u · ∂ (1− ch/ce)/∂R = 1× 0.061× 0.26 = 0.016 (using estimates from

Online Appendix D). The effect of R is tiny. Since employment l moves by less than 0.05 around

its average value of 0.94, changes in l have effects on φ/U ′(ce) of at most 0.05×0.12 = 0.006,
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which are minuscule compared to the average value of U ′(ce)/φ . In sum, we set φ/U ′(ce) =

1.01 and assume it is constant. Combining these results with (A35), we find that the Baily-

Chetty replacement rate is

4.6× [0.46−1.32× (R−0.42)]× [0.12−0.26× (R−0.42)] .

Our calibration implies that the Baily-Chetty replacement rate does not depend on labor

market conditions. This property arises because we calibrated the consumption drop upon un-

employment and job-search behavior to not depend much on labor market conditions. A related

implication of our calibration is that the microelasticity of unemployment duration with respect

to benefit level, εm
b , does not depend much on labor market conditions (see equation (A36)). Is

this realistic? Landais (2015) estimates how εm
b varies with labor market conditions and finds

that the effect of state unemployment rate on εm
b is small and not significantly different from

zero (online appendix: p. 17 and Table A5). Schmieder, von Wachter, and Bender (2012) obtain

a similar result in German administrative data.2 Card et al. (2015) is the only study finding that

εm
b changes with the unemployment rate: their estimate of εm

b in Missouri is much larger when

unemployment was high (2008–2013) than when it was low (2003–2007). Part of the varia-

tion, however, is explained by the extremely long duration of benefits after the Great Recession,

which altered benefit exhaustion rates. Hence, overall, εm
b does not seem to respond much to

labor market conditions.

Variation of τ/u with UI

We compute equation (20), which relates the ratio τ/u to the UI replacement rate, R.

We begin by computing the semielasticity

(A37)
d ln(τ)

dR
=

d ln(τ)
d ln(θ)

· d ln(θ)
d ln(∆U)

· d ln(∆U)

dR
.

2They use variations in the potential duration of benefits by age and a regression discontinuity design to estimate
the microelasticity of unemployment duration with respect to the benefit duration. They replicate the estimation
across labor markets with different unemployment rates, and they find that their estimates remain broadly constant
(p. 732 and Figure VI, panel A).
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We calculate each of the three factors in turn. Equation (2) implies that

d ln(τ)
d ln(θ)

= η · (1+ τ).

Equation (A8) shows that

d ln(θ)
d ln(∆U)

=−
(

1− εM

εm

)
· εm

(1−η) · (1−u) · (1+ ε f )
.

Last, ∆U = U(ce)−U(cu + h) + z+ λ (h). Since z is constant and h is chosen optimally to

minimize ∆U , R affects ∆U only through cu and ce. Consider a small change dR and the

associated changes dcu, dce, and dl. Equations (A21) and (A20) imply that

dcu = w · l ·dR+

(
1−α

α
+R
)
·dl

dce =−w ·u ·dR+

(
1−α

α
+R
)
·dl.

(We assume again that R does not affect w.) Hence, the change dR leads to a change

d∆U =U ′(ch) ·
{(

U ′(ce)

U ′(ch)
−1
)
·
(

1−α

α
+R
)
·dl−

(
u ·U

′(ce)

U ′(ch)
+ l
)
·w ·dR

}
=−U ′(ch) ·

{
γ

(
1− ch

ce

)
·
(

1−α

α
+R
)
·dl +

[
1− γ ·u ·

(
1− ch

ce

)]
·w ·dR

}
.

This expression can be simplified with a few numerical approximations. With γ = 1, u = 0.061,

and 1−ch/ce = 0.12 (Online Appendix D and Section II), the term γ ·u · (1−ch/ce) is less than

0.01 and can be neglected. In addition, the change dl has to be much smaller than dR in the

range of R that we consider. Since the term in front of dl is one order of magnitude smaller than

the term in front of dR, we neglect the entire term attached to dl. Accordingly, the effect of dR

on ∆U simplifies to d∆U =−U ′(ch) ·w ·dR. Finally, combining these results into (A37) yields

(A38)
d ln(τ)

dR
=

εm ·U ′(ch) ·w
(1−u) ·∆U

·
(

1− εM

εm

)
· η

1−η
· 1+ τ

1+ ε f .
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Next, we compute the semielasticity

(A39)
d ln(u)

dR
=

d ln(u)
d ln(∆U)

· d ln(∆U)

dR
.

The definition of εM implies d ln(u)/d ln(∆U) =−εM. Since d∆U/dR=−U ′(ch) ·w, we obtain

d ln(u)
dR

=
εm ·U ′(ch) ·w
(1−u) ·∆U

· (1−u) · ε
M

εm .

We then combine (A38) and (A39) to compute d(τ/u)/dR:

d(τ/u)
dR

=
τ

u
·
[

d ln(τ)
dR

− d ln(u)
dR

]
=

τ

u
·

εm
b ·w
cu ·

[(
1− εM

εm

)
· η

1−η
· 1+ τ

1+ ε f − (1−u) · ε
M

εm

]
,(A40)

where we have also used the result from (A17). We use (A40) to calibrate d(τ/u)/dR at an aver-

age labor market and UI program. We set η = 0.6, ε f = 0, and εm
b = 0.4 (Online Appendix D);

1− εm/εm = 0.4 (Section III); τ = 2.3% and u = 6.1% (Section II); and cu/w = 0.74 (equa-

tion (A21)). This yields d(τ/u)/dR = 0.01.

Using the calibration, we obtain a linear relationship between the ratio τ/u and the replace-

ment rate R around their observed values, τ̂/û and R̂:3

(A41)
τ

u
=

τ̂

û
+0.01×

(
R− R̂

)
.

Online Appendix F: Sensitivity Analysis

We describe the alternative formulas used to compute the optimal UI replacement rates in the

sensitivity analysis of Section IV.C. We derive these formulas by following the steps of the

derivation of the baseline formula, given by (21). To avoid repetition, we do not provide the

entire derivations here: we only describe the steps that are modified.

3We set d(τ/u)/dR to 0.01, which is its average value, not its value at τ̂/û and R̂. Using the value at τ̂/û and
R̂ instead would only add second-order terms to the first-order approximation (A41), which we opt to neglect.
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Elasticity Wedge (1− εM/εm)

The elasticity wedge 1− εM/εm affects the ratio τ/u. Indeed, equation (A40) implies that with

a generic 1− εM/εm,

τ

u

(
R,

εM

εm

)
=

τ̂

û
+0.21×

[
1.53×

(
1− εM

εm

)
−0.94× εM

εm

]
×
(
R− R̂

)
.

Thus, with a generic 1− εM/εm, the optimal UI formula becomes

R = 4.6× [0.46−1.32× (R−0.42)]× [0.12−0.26× (R−0.42)]

+

[
1− εM

εm

]
×
[

0.88−0.32× (R−0.42)−1.5× τ

u

(
R,

εM

εm

)]
.

In panel A of Figure 8, we solve this formula with 1− εM/εm = −0.4, 1− εM/εm = 0, and

1− εM/εm = 0.4.

Microelasticity of Unemployment Duration with Respect to Benefit Level (εm
b )

The microelasticity εm
b influences the calibration of the microelasticity of unemployment with

respect to UI, εm. Indeed, (A36) implies that with a generic εm
b , the parameter κ that determines

εm satisfies

κ(εm
b ) = 0.56× ε

m
b .

In addition, εm
b affects the utility cost of unemployment, K. Indeed, (A30) implies that with a

generic εm
b , dψ(e)/(φ ·w) =−εm

b ×0.55×dR, so that

K(R,εm
b ) = 0.46− [1.11+0.55× ε

m
b ]× (R−0.42).

Finally, εm
b affects the ratio τ/u. Equation (A40) implies that with a generic εm

b ,

τ

u
(R,εm

b ) =
τ̂

û
+ ε

m
b ×0.03×

(
R− R̂

)
.
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With a generic εm
b , the optimal UI formula therefore becomes

R =
1.01

κ(εm
b )
× [K(R,εm

b )]× [0.12−0.26× (R−0.42)]

+
[
0.4−0.65×

(
τ

u
(R,εm

b )−0.38
)]
×
[
K(R,εm

b )+R−1.5× τ

u
(R,εm

b )
]
.

In panel B of Figure 8, we solve this formula with εm
b = 0.2, εm

b = 0.4, and εm
b = 0.6.

Nonpecuniary Cost of Unemployment (Z)

The cost Z affects K: equations (9) and (A30) show that with a generic Z,

K(R,Z) = 0.16+
Z

φ ·w
−
[

1.10+0.48×
(

0.16+
Z

φ ·w

)]
× (R−0.42).

In addition, (A36) implies that with a generic Z, the parameter κ satisfies

κ(Z) = 0.49×
(

0.16+
Z

φ ·w

)
.

With a generic Z, the optimal UI formula therefore becomes

R =
1.01
κ(Z)

× [K(R,Z)]× [0.12−0.26× (R−0.42)]

+

[
0.4−0.65×

(
τ̂

û
−0.38+0.01×

(
R− R̂

))]
×
[

K(R,Z)+R−1.5×
(

τ̂

û
+0.01×

(
R− R̂

))]
.

In panel C of Figure 8, we solve this formula with Z = 0, Z = 0.3 ·φ ·w, and Z = 0.6 ·φ ·w.

Matching Elasticity (η)

The elasticity η affects the ratio τ/u: equation (A40) implies that with a generic η ,

τ

u
(R,η) =

τ̂

û
+0.21×

[
0.41× η

1−η
−0.56

]
×
(
R− R̂

)
.
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The elasticity η also affects the efficiency term. Overall, with a generic η , the optimal UI

formula becomes

R = 4.6× [0.46−1.32× (R−0.42)]× [0.12−0.26× (R−0.42)]

+
[
0.4−0.65×

(
τ

u
(R,η)−0.38

)]
×
[

0.88−0.32× (R−0.42)− η

1−η
× τ

u
(R,η)

]
.

In panel D of Figure 8, we solve this formula with η = 0.5, η = 0.6, and η = 0.7.

Coefficient of Relative Risk Aversion (γ)

The risk aversion γ affects the Baily-Chetty replacement rate, as showed by (A35). It also

affects K: equations (A27) and (A28) imply that with a generic γ , we have dU(cu+h)/(φ ·w) =
(0.94+0.10× γ)×dR, which yields

K(R,γ) = 0.46− (1.22+0.10× γ)× (R−0.42).

Equation (A25) implies that γ also affects K through U ′(ce)/φ and dU(ce)/(φ ·w), but these

effects are negligible. Moreover, (A36) implies that γ affects the parameter κ:

κ(γ) =
0.25

1+0.11× γ
.

In sum, with a generic γ , the optimal UI formula becomes

R = γ× 1.01
κ(γ)

× [K(R,γ)]× [0.12−0.26× (R−0.42)]

+

[
0.4−0.65×

(
τ̂

û
−0.38+0.01×

(
R− R̂

))]
×
[

K(R,γ)+R−1.5×
(

τ̂

û
+0.01×

(
R− R̂

))]
.

In panel E of Figure 8, we solve this formula with γ = 0.5, γ = 1, and γ = 2.
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Consumption Drop Upon Unemployment (1− ch/ce)

The consumption drop is a function of the UI replacement rate, as showed by (A23). We denote

by ch/ce the consumption ratio for a generic replacement rate R and by ch/ce the consumption

ratio when the replacement rate takes the average value of R = 42%. Equation (A22) implies

that d(ch/ce) = 0.30× ch/ce×dR. Hence, the consumption drop upon unemployment satisfies

1− ch

ce = 1− ch/ce−0.30× ch/ce× (R−0.42).

The consumption ratio ch/ce also affects K. First, using (A24) and (A26), we find that at R = R,

K
(

R,ch/ce
)
= 1.61−1.31× ch/ce.

(Equation (A25) shows that ch/ce affects K through U ′(ce)/φ , but the effect is negligible.) In

addition, (A27), (A28), and (A30) imply that

dU(cu +h)
φ ·w

=
[
1.82−0.88× ch/ce

]
×dR,

dψ(e)
φ ·w

=−0.48×
[
K
(

R,ch/ce
)]
×dR.

(Equation (A25) shows that ch/ce affects K through dU(ce)/(φ ·w), but the effect is also negli-

gible.) Hence, we find that

K
(

R,ch/ce
)
= K

(
R,ch/ce

)
−
[
1.82+0.48×K

(
R,ch/ce

)
−0.88× ch/ce

]
× (R−0.42).

Last, (A28) and (A36) imply that ch/ce affects the parameter κ:

κ

(
ch/ce

)
= 0.54×

K
(

R,ch/ce
)

1.94−0.94× ch/ce
.
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In sum, with a generic average consumption drop 1− ch/ce, the optimal UI formula becomes

R =
1.01

κ

(
ch/ce

) ×[K(R,ch/ce)
]
×
[
1− ch/ce−0.30× ch/ce× (R−0.42)

]
+

[
0.4−0.65×

(
τ̂

û
−0.38+0.01×

(
R− R̂

))]
×
[

K(R,ch/ce)+R−1.5×
(

τ̂

û
+0.01×

(
R− R̂

))]
.

(Equation (A25) implies that ch/ce also affects the Baily-Chetty replacement rate through U ′(ce)/φ ,

but the effect is negligible.) In panel F of Figure 8, we solve this formula with 1− ch/ce = 5%,

1− ch/ce = 12%, and 1− ch/ce = 20%.

Online Appendix G: Calibration of the Simulation Model

We calibrate the matching model simulated in Sections IV.D and IV.E. The parameter values

used in simulations are summarized in Table A1. For the calibration, we normalize average

technology to a = 1 and average job-search effort to e = 1.

First, we use a concave production function:

y(n) = a ·nα ,

where the parameter a measures technology and the parameter α measures diminishing marginal

returns to labor. We set α = 0.73 to be consistent with 1− εM/εm = 0.4 (Online Appendix E).

Next, we use a constant-relative-risk-aversion specification for the utility from consumption:

U(c) =
c1−γ −1

1− γ
,

where the parameter γ is the coefficient of relative risk aversion. We set γ = 1 (Online Ap-

pendix D), which implies that U(c) = ln(c).

Then, we calibrate parameters related to matching. We use a Cobb-Douglas matching func-

tion:

m(e ·u,v) = µ · (e ·u)η · v1−η ,
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Table A1. Parameter Values in the Simulation Model

Description Source

α = 0.73 Production function: concavity Matches 1− εM/εm = 0.4
γ = 1 Relative risk aversion Chetty (2006)
s = 2.8% Monthly job-separation rate CPS, 1990–2014
η = 0.6 Matching elasticity Petrongolo and Pissarides (2001)
µ = 0.60 Matching efficacy Matches θ = 0.43
ρ = 0.80 Matching cost Matches τ = 2.3%
ζ = 0.5 Real wage: rigidity Michaillat (2014)
ω = 0.73 Real wage: level Matches u = 6.1%
σ = 0.17 Disutility from home production: convexity Matches d ln(ch)/d ln(cu) = 0.2
ξ = 1.43 Disutility from home production: level Matches 1− ch/ce = 12%
κ = 0.22 Disutility from job search: convexity Matches εm

b = 0.4
δ = 0.33 Disutility from job search: level Matches e = 1
z =−0.14 Disutility from unemployment Matches Z = 0.3×φ ×w

where the parameter µ measures matching efficacy and the parameter η is the matching elastic-

ity. (With this matching function, f (θ) = µ ·θ 1−η and q(θ) = µ ·θ−η .) We set η = 0.6 (Online

Appendix D). We set the job-separation rate to its average value for 1990–2014: s = 2.8% (On-

line Appendix B). To calibrate µ , we rewrite (1) as

µ = θ
η−1 · s · (1−u)

u · e
.

We use the number of vacancies plotted in Figure A1, panel B. The average number of vacancies

for 1990–2014 is 3.80 million. The average number of unemployed workers in CPS data for

1990–2014 is 8.82 million. Since the average job-search effort is normalized 1, the average

tightness for 1990–2014 is θ = 3.80/(1× 8.82) = 0.43. With s = 2.8%, θ = 0.43, η = 0.6,

e = 1, and u = 6.1% (Section II), we get µ = 0.60. Finally, to calibrate the matching cost ρ , we

exploit (2), which implies

ρ = µ ·θ−η · τ

s · (1+ τ)
.

With µ = 0.6, s = 2.8%, θ = 0.43, and τ = 2.3% (Section II), we obtain ρ = 0.80.

We now calibrate parameters related to wages. We use a partially rigid wage schedule:

w(a) = ω ·a1−ζ ,
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where the parameter ω governs the wage level and the parameter ζ governs wage rigidity.

Following Michaillat (2014), we set the wage rigidity to ζ = 0.5. To calibrate ω , we use (22)

and the equilibrium condition ld(θ ,a) = l = 1−u, which imply

ω = aζ ·α · (1−u)α−1 · (1+ τ)−α .

With a = 1, τ = 2.3%, α = 0.73, and u = 6.1%, we obtain ω = 0.73.

We now compute the consumption levels implied by the calibration. The definition of the

replacement rate implies ce− cu = w · (1−R). The government’s budget constraint imposes

(1− u) · ce + u · cu = a · nα . Solving this linear system of two equations with a = 1,w = 0.73,

R = 42% (Section II), u = 6.1%, τ = 2.3%, n = (1− u)/(1+ τ) = 0.92, and α = 0.73, we

obtain ce = 0.97 and cu = 0.54. As 1− ch/ce = 12% (Online Appendix D), we find ch = 0.85

and h = ch− cu = 0.31.

These consumption levels allow us to compute other statistics. The average marginal utility

φ satisfies 1/φ = (1− u) · (ce)γ + u · (ch)γ . With γ = 1, u = 6.1%, ce = 0.97, and ch = 0.85,

we find φ = 1.04. We set the total nonpecuniary cost from unemployment to Z = 0.3×φ ×w

(Section II). With φ = 1.04 and w = 0.73, we obtain Z = 0.23. Finally, with log utility, Z =

0.23, ce = 0.97, and ch = 0.85, we find that the utility gain from work is U(ce)−U(ch)+Z =

ln(ce/ch)+Z = 0.36.

To conclude, we calibrate parameters from workers’ utility function. We assume that the

disutility from home production is a convex power function:

λ (h) = ξ · h1+σ

1+σ
,

where the parameter ξ governs the level of disutility and the parameter σ governs the convexity

of the disutility function. Equation (4) implies that

(A42) ξ ·hσ = (cu +h)−γ .
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We implicitly differentiate this equation with respect to cu and obtain

dh
dcu =− γ · (h/ch)

σ + γ · (h/ch)

and
dch

dcu = 1+
dh
dcu =

σ

σ + γ · (h/ch)
.

Since ch = 0.85, cu = 0.54 and d ln(ch)/d ln(cu) = 0.2 (Online Appendix D), we infer that

dch/dcu = 0.2× (0.85/0.54) = 0.31. Furthermore, h/ch = 0.35 and γ = 1. We conclude that

σ = 0.17. Using (A42), γ = 1, cu = 0.54, h = 0.31, and σ = 0.17, we find ξ = 1.43. Then we

assume that the disutility from search effort is a convex power function:

ψ(e) = δ · κ

1+κ
· e(1+κ)/κ ,

where the parameter δ governs the level of disutility and the parameter κ governs the convexity

of the disutility function. We set κ = 0.22 to be consistent with εm
b = 0.4 (Online Appendix E).

To calibrate δ , we use equation (6) with e = 1, which implies

δ = (1−u) ·
(

U(ce)−U(ch)+Z
)
.

With u= 6.1% and U(ce)−U(ch)+Z = 0.36, we find δ = 0.33. Last, we calibrate the disutility

from unemployment, z. We target Z = z+ψ(e)+λ (h) = 0.23. On average λ (h) = λ (0.31) =

0.31 and ψ(e) = ψ(1) = 0.06, so we set z =−0.14.

Online Appendix H: Additional Simulation Results

We discuss additional results obtained in the simulations of Sections IV.D and IV.E. The simu-

lations compare three UI programs: in the first, the replacement rate remains constant at 42%,

the average US value; in the second, the replacement rate is the Baily-Chetty replacement rate,

described in formula (11); and in the third, the replacement rate is the optimal replacement rate,

given by formula (11). Under each UI program, we simulate equilibria spanning the business

cycle.

Figure A2 displays the additional results. The top three panels describe labor market con-

ditions. When technology increases from 0.96 to 1.03 and UI remains constant, the unem-
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Figure A2. Additional Simulation Results

Notes: This figure complements Figure 10. The figure depicts equilibria under a constant replacement rate of
42% (dotted line), under the Baily-Chetty replacement rate (dashed line), and under the optimal UI replacement
rate (solid line). The optimal replacement rate is computed using formula (11) and the Baily-Chetty replacement
rate using the expression in (11). The equilibria are parametrized by various levels of technology. The results are
obtained by simulating the matching model of Michaillat (2012) under the calibration in Online Appendix G.
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ployment rate falls from 10% to 4.5%. Unemployment responds when the UI replacement rate

adjusts from its original level of 42% to the Baily-Chetty and optimal levels; however, these

responses are small. The range of fluctuations of unemployment in the simulations is consistent

with the range observed in the United States (Figure 1, panel B).

As unemployment falls, the recruiter-producer ratio increases from 1% to 3.7%. This is

because when technology increases, it stimulates labor demand, which raises tightness θ and

therefore the recruiter-producer ratio τ(t). The range of fluctuations of the recruiter-producer

ratio in the simulations is comparable, albeit somewhat wider, to the range observed in the

United States (Figure 1).

Finally, since unemployment u is countercyclical and the recruiter-producer ratio τ is pro-

cyclical, the ratio τ/u is procyclical. As a consequence, the efficiency term is countercyclical:

it is above 0.5 for high unemployment rates, around 0.3 on average, and below −0.3 for low

unemployment rates. The fluctuations of the efficiency term in the simulations are consistent

with those in Figure 3.

The middle three panels display the microelasticity of unemployment with respect to UI

(εm), macroelasticity of unemployment with respect to UI (εM), and elasticity wedge (1−
εM/εm). On average, the elasticity wedge is positive, equal to 0.4. The elasticity wedge is

countercyclical but always positive: it decreases from 0.71 to 0.23 as unemployment falls. Sec-

tion III.E explains why the elasticity wedge is countercyclical and provides empirical evidence.

The fluctuations of the elasticity wedge in the simulations are consistent with those in Figure 5.

In the simulations, the elasticity wedge varies because the macroelasticity does. Indeed,

as unemployment falls, the macroelasticity increases from 0.05 to 0.13. This means that UI

has a weaker influence on unemployment in slumps than in booms (this property arises from

job rationing). Unlike the macroelasticity, the microelasticity remains broadly constant around

0.17. This means that UI has the same effect on job-search effort in slumps and booms.

The next panel shows that the consumption drop upon unemployment is procyclical: as

unemployment falls, the consumption drop rises from 9% to 14% when R = 42%, from 12%

to 15% under Baily-Chetty UI, and from 6% to 16% under optimal UI. Under optimal UI,

the consumption drop is procyclical because the replacement rate is countercyclical. Under

constant and Baily-Chetty UI, the consumption drop is procyclical because home production is

countercyclical. This happens because unemployed workers receive lower UI benefits in bad
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times due to the (weakly) lower replacement rate and lower output in the economy. With lower

benefits, the marginal value of home production is higher, so home production is higher.

Figure 10 shows that the optimal UI program is quite generous in bad times, with a replace-

ment rate above 50%. This result is striking because, as showed in the last two panels, optimal

UI has significant disincentives effects at the micro level. These disincentive effects, arising

from moral hazard, reduce job search and home production: in bad times, both job search and

home production are about 10% below their average levels.
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