A MACROECONOMIC APPROACH TO OPTIMAL UNEMPLOYMENT INSURANCE

Camille Landais, Pascal Michaillat, Emmanuel Saez

American Economic Journal: Economic Policy, 2018

Paper available at https://pascalmichaillat.org/4/

BAILY-CHETTY THEORY OF OPTIMAL UI

- insurance-incentive tradeoff:
 - UI provides consumption insurance
 - but UI reduces job search
- two aspects of the debate are missing:
 - sometimes jobs may be unavailable
 - UI may affect job creation
- because the Baily-Chetty model is partial equilibrium:
 - endogenous labor supply
 - but fixed labor market tightness

THIS PAPER

- general-equilibrium model of optimal UI
 - endogenous labor supply
 - endogenous labor demand
 - equilibrium labor market tightness
- model captures 3 effects of UI:
 - UI may reduce job search
 - UI may alleviate rat race for jobs
 - UI may raise wages and deter job creation
- application: optimal UI over the business cycle

UI PROGRAM

- moral hazard: search effort is unobservable
- employed workers receive c^e
- unemployed workers receive c^u
- replacement rate R measures generosity of UI:
 - $-R \equiv 1 (c^e c^u)/w$
 - R = benefit rate + tax rate
 - workers keep fraction 1 R of earnings

LABOR MARKET

- measure 1 of identical workers, initially unemployed
 - search for jobs with effort e
- measure 1 of identical firms
 - post v vacancies to hire workers
- CRS matching function: l = m(e, v)
- labor market tightness: $\theta \equiv v/e$

MATCHING PROBABILITIES

vacancy-filling probability:

$$q(\underline{\theta}) \equiv \frac{l}{v} = m\left(\frac{1}{\theta}, 1\right)$$

• job-finding rate per unit of effort:

$$f(\theta) \equiv \frac{l}{e} = m(1, \theta)$$

• job-finding probability: $e \cdot f(\theta) < 1$

MATCHING COST: ρ RECRUITERS PER VACANCY

- employees = $\left[1 + \tau(\theta)\right]$ · producers
- proof:

employees producers recruiters
$$l = n + \rho \cdot \frac{l}{q(\theta)}$$

$$l = \left[1 + \frac{\rho}{q(\theta) - \rho}\right] \cdot n$$

$$\equiv 1 + \tau(\theta)$$

REPRESENTATIVE WORKER

- consumption utility U(c), search disutility $\psi(e)$
- utility gain from work: $\Delta U \equiv U(c^e) U(c^u)$
- solves $\max_{e} \{ U(c^u) + e \cdot f(\theta) \cdot \Delta U \psi(e) \}$
- effort supply $e^{s}(0, \Delta U)$ gives optimal effort:

$$\psi'(e^{S}(\theta, \Delta U)) = f(\theta) \cdot \Delta U$$

• labor supply $l^s(\underline{\theta}, \underline{\Delta}\underline{U})$ gives employment rate:

$$l^s(\theta, \Delta U) = e^s(\theta, \Delta U) \cdot f(\theta)$$

LABOR SUPPLY

REPRESENTATIVE FIRM

- hires l employees
 - $-n = l/[1 + \tau(\theta)]$ producers
 - -1-n recruiters
- production function: y(n)
- solves $\max_{l} \left\{ y(l/[1+\tau(\theta)]) w \cdot l \right\}$
- labor demand $l^d(\theta, w)$ gives optimal employment:

$$y'\left(\frac{l^d}{1+\tau(\theta)}\right) = \left[1+\tau(\theta)\right] \cdot w$$

LABOR DEMAND

LABOR-MARKET EQUILIBRIUM

- as in any matching model, need a price mechanism
 - general wage schedule: $w = w(\theta, \Delta U)$
- tightness equilibrates supply & demand:

$$l^{s}(\theta, \Delta U) = l^{d}(\theta, w(\theta, \Delta U))$$

• equilibrium tightness: $\theta(\Delta U)$

LABOR-MARKET EQUILIBRIUM

SUFFICIENT-STATISTIC FORMULA

FOR OPTIMAL UI

GOVERNMENT'S PROBLEM

• choose ΔU to maximize welfare:

$$SW = l \cdot U(c^{e}) + (1 - l) \cdot U(c^{u}) - \psi(e)$$

subject to budget constraint:

$$y\left(\frac{l}{1+\tau(\theta)}\right) = l \cdot c^{e} + (1-l) \cdot c^{u}$$

- to workers' response: $e = e^{s}(\theta, \Delta U) \& l = l^{s}(\theta, \Delta U)$
- and to equilibrium constraint: $\theta = \theta(\Delta U)$

CONDITION FOR OPTIMAL UI

- express all the variables as a function of $(\theta, \Delta U)$
- government solves $\max_{\Delta U} SW(\theta(\Delta U), \Delta U)$
- first-order condition:

$$0 = \frac{\partial SW}{\partial \Delta U}\Big|_{\theta} + \underbrace{\frac{\partial SW}{\partial \theta}\Big|_{\Delta U} \cdot \frac{d\theta}{d\Delta U}}_{\text{Correction}}$$
Baily-Chetty formula

BAILY-CHETTY FORMULA

$$R = R^* \left(\epsilon^m, \frac{U'(c^u)}{U'(c^e)} \right)$$

- ϵ^m > 0: microelasticity of unemployment wrt UI
 - measures disincentive from search
 - R^* is decreasing in ϵ^m
- $U'(c^u)/U'(c^e) > 1$: ratio of marginal utilities
 - measures need for insurance
 - R^* is increasing in $U'(c^u)/U'(c^e)$

MICROELASTICITY OF UNEMPLOYMENT

MICROELASTICITY OF UNEMPLOYMENT

$\partial SW/\partial \theta|_{\Delta U}$ measured by efficiency term

- efficiency term depends on several sufficient statistics:
 - $-\tau(\theta)$: recruiter-producer ratio
 - u: unemployment rate
 - 1 − η: elasticity of the job-finding rate $f(\theta)$
 - $-\Delta U$: the utility gain from work

EFFICIENCY TERM AND EFFICIENT TIGHTNESS

EFFICIENCY TERM AND EFFICIENT TIGHTNESS

EFFICIENCY TERM AND EFFICIENT TIGHTNESS

MACROELASTICITY OF UNEMPLOYMENT

MACROELASTICITY OF UNEMPLOYMENT

MACROELASTICITY OF UNEMPLOYMENT

$1 - \epsilon^M/\epsilon^m$ gives effect of UI on θ

$1-\varepsilon^{\textit{M}}/\varepsilon^{\textit{m}}$ gives effect of UI on θ

$1-\varepsilon^{\textit{M}}/\varepsilon^{\textit{m}}$ gives effect of UI on θ

OPTIMAL UI FORMULA IN SUFFICIENT STATISTICS

$$\underbrace{R = R^* \left(\epsilon^m, \frac{U'(c^u)}{U'(c^e)} \right)}_{\text{Baily-Chetty formula}} + \underbrace{\left(1 - \frac{\epsilon^M}{\epsilon^m} \right) \cdot \text{efficiency term}}_{\text{correction}}$$

OPTIMAL UI VERSUS BAILY-CHETTY LEVEL

- optimal UI = Baily-Chetty if
 - UI has no effect on tightness: $\epsilon^M = \epsilon^m$
 - or tightness is efficient: efficiency term = 0
- optimal UI ≠ Baily-Chetty if
 - UI affects tightness: $\epsilon^M \neq \epsilon^m$
 - and tightness is inefficient: efficiency term ≠ 0
- optimal UI > Baily-Chetty if UI pushes tightness toward efficiency

OPTIMAL UI OVER THE BUSINESS CYCLE:

OF TIMAL OF OVER THE BOSINESS CICLE.

THEORY

THREE MATCHING MODELS

	model		
	standard	rigid-wage	job-rationing
prod. function	linear	linear	concave
wage	bargaining	rigid	rigid
reference	Pissarides [2000]	Hall [2005]	Michaillat [2012]

BUSINESS CYCLES IN THE MODELS

- Baily-Chetty level is broadly constant
- 1 ϵ^M/ϵ^m has constant sign
- efficiency term changes sign over business cycle
 - under labor demand shocks
 - > 0 in slumps and < 0 in booms</p>
 - generates cyclicality of optimal UI

Standard model: $1 - \epsilon^M/\epsilon^m < 0$

Standard model: $1 - \epsilon^M/\epsilon^m < 0$

Standard model: $1 - \epsilon^M/\epsilon^m < 0$

RIGID-WAGE MODEL: $1 - \epsilon^M/\epsilon^m = 0$

RIGID-WAGE MODEL: $1 - \epsilon^M/\epsilon^m = 0$

RIGID-WAGE MODEL: $1 - \epsilon^M/\epsilon^m = 0$

Job-Rationing model: $1 - \epsilon^M/\epsilon^m > 0$

Job-Rationing model: $1 - \epsilon^M/\epsilon^m > 0$

JOB-RATIONING MODEL: $1 - \epsilon^M/\epsilon^m > 0$

CYCLICALITY OF OPTIMAL UI

- tightness is too low in slumps & too high in booms
- standard model: procyclical UI
 - moral hazard & job creation: $1 \epsilon^{M}/\epsilon^{m} < 0$
 - UI should be reduced in slumps to stimulate tightness
- rigid-wage model: acyclical UI
 - only moral hazard: $1 \epsilon^M/\epsilon^M = 0$
 - UI has no effect on tightness
- job-rationing model: countercyclical UI
 - moral hazard & rat race: 1 ϵ^M/ϵ^m > 0
 - UI should be raised in slumps to stimulate tightness

OPTIMAL UI OVER THE BUSINESS CYCLE:

or thinke of over the boomess creek.

APPLICATION TO THE US

MICROELASTICITY OF UNEMPLOYMENT WRT UI

- many estimates of the microelasticity
- obtained by comparing identical jobseekers receiving different
 UI benefits in the same market
- plausible range of estimates: $0.4 \le \epsilon^m \le 0.8$
 - estimates of the microelasticity of unemployment duration wrt potential duration of UI benefits
- key references:
 - Katz, Meyer [1990]
 - Landais [2015]

MACROELASTICITY OF UNEMPLOYMENT WRT UI

- few estimates of the macroelasticity
- obtained by comparing identical labor markets receiving different UI benefits
- plausible range of estimates: $0 \le \epsilon^M \le 0.3$
- key references:
 - Card, Levine [2000]
 - Hagedorn et al [2016]
 - Chodorow-Reich, Coglianese, Karabarbounis [2019]
 - Dieterle, Bartalotti, Brummet [2020]
 - Boone et al [2021]

COMPARING MICROELASTICITY & MACROELASTICITY

• estimates obtained separately suggest $1 - \epsilon^M/\epsilon^m > 0$:

$$0 < \epsilon^{M} < 0.3 < 0.4 < \epsilon^{m} < 0.8$$

- implied range for the elasticity wedge: 0.25–1
 - lower bound: $1 \epsilon^{M}/\epsilon^{m} = 1 0.3/0.4 = 0.25$
 - upper bound: $1 \epsilon^M/\epsilon^M = 1 0/0.8 = 1$
- one exception: Johnston, Mas [2018] find $1 \epsilon^M/\epsilon^m = 0$ when they estimate ϵ^m and ϵ^M in MO data

RESPONSE OF TIGHTNESS TO UI

- Marinescu [2017] finds that an increase in UI raises tightness
 - corresponding elasticity wedge: $1 \epsilon^{M}/\epsilon^{m} = 0.4$
- Levine [1993] & Farber, Valletta [2015] find that an increase in UI leads uninsured jobseekers to find jobs faster
 - → an increase in UI raises tightness

$$\rightarrow$$
 1 - $\epsilon^M/\epsilon^m > 0$

- evidence from Austria: Lalive et al [2015] find that an increase in
 UI raises tightness
 - corresponding elasticity wedge: $1 \epsilon^{M}/\epsilon^{m} = 0.2$

RAT-RACE & JOB-CREATION CHANNELS

- RCT evidence of rat-race mechanism:
 - negative spillover of more intense job search
 - Crepon et al [2013] in France
 - Gautier et al [2012] in Denmark
- no evidence of job-creation mechanism:
 - re-employment wages unaffected by UI
 - Krueger, Mueller [2016]
 - Marinescu [2017]
 - Johnston, Mas [2018]
 - also true in Austria: Card et al [2007]

summary of the evidence: 1 – $\epsilon^{\it M}/\epsilon^{\it m} \approx 0.4$

- the evidence shows that $1 \epsilon^M/\epsilon^m \ge 0$
 - reasonable median estimate: $1 \epsilon^{M}/\epsilon^{m} = 0.4$
- the evidence supports the rat-race mechanism but not the job-creation mechanism
 - further support for $1 \epsilon^M/\epsilon^M > 0$
- additional evidence suggests that the elasticity wedge may be larger in bad times
 - Valletta [2014]
 - Toohey [2017]

ELASTICITY WEDGE IN GOOD TIMES

ELASTICITY WEDGE IN BAD TIMES

Employment

ELASTICITY WEDGE IN THE US

JOBSEEKING & RECRUITING IN THE US

EFFICIENCY TERM IN THE US

EFFICIENCY TERM = $0 \Rightarrow UI = BAILY-CHETTY$

EFFICIENCY TERM $< 0 \Rightarrow$ UI < BAILY-CHETTY

EFFICIENCY TERM $> 0 \Rightarrow$ UI > BAILY-CHETTY

EFFECTIVE REPLACEMENT RATE IN THE US

OPTIMAL REPLACEMENT RATE IN THE US

SENSITIVITY ANALYSIS: MICROELASTICITY

SENSITIVITY ANALYSIS: COST OF UNEMPLOYMENT

SENSITIVITY ANALYSIS: MATCHING ELASTICITY

SENSITIVITY ANALYSIS: RISK AVERSION

SENSITIVITY ANALYSIS: CONSUMPTION DROP

OPTIMAL UI OVER THE BUSINESS CYCLE:

OF TIMAL OF OVER THE BOSINESS CICLE.

SIMULATIONS OF JOB-RATIONING MODEL

Parameter	Description	Source
$\alpha = 0.73$	Production function: concavity	$1 - \frac{\epsilon^M}{\epsilon^m} = 0.4$
$\gamma = 1$	Relative risk aversion	Chetty [2006]
s = 2.8%	Monthly job-separation rate	CPS, 1990-2014
$\eta = 0.6$	Matching elasticity	Petrongolo,
		Pissarides [2001]
$\mu = 0.60$	Matching efficacy	$\theta = 0.43$
$\rho = 0.80$	Matching cost	τ = 2.3%
$\zeta = 0.5$	Real wage: rigidity	Michaillat [2014]
$\omega = 0.73$	Real wage: level	u = 6.1%
$\sigma = 0.17$	Disutility from home production: convexity	$\frac{d\ln(c^h)}{d\ln(c^u)}=0.2$
ξ = 1.43	Disutility from home production: level	$1 - \frac{\dot{c}^h}{c^e} = 12\%$
κ = 0.22	Disutility from job search: convexity	$\epsilon_b^m = 0.4$
$\delta = 0.33$	Disutility from job search: level	e = 1
z = -0.14	Disutility from unemployment	$Z = 0.3 \times \phi \times W$

UNEMPLOYMENT RATE OVER THE CYCLE

REPLACEMENT RATE OVER THE CYCLE

RECRUITERS/PRODUCERS OVER THE CYCLE

EFFICIENCY TERM OVER THE CYCLE

MICROELASTICITY OVER THE CYCLE

MACROELASTICITY OVER THE CYCLE

ELASTICITY WEDGE OVER THE CYCLE

CONSUMPTION DROP OVER THE CYCLE

JOB SEARCH OVER THE CYCLE

HOME PRODUCTION OVER THE CYCLE

